US009274866B2

a2z United States Patent (10) Patent No.: US 9,274,866 B2

Camp et al. (45) Date of Patent: Mar. 1, 2016
(54) PROGRAMMING NON-VOLATILE MEMORY (56) References Cited
USING A RELAXED DWELL TIME
U.S. PATENT DOCUMENTS
(71) Applicant: INTERNATIONAL BUSINESS 2031521 BL* 102011 Y. 365/185.02
,031, ANE s .
rACII;{(IBII\IIE; %(S)RPORATION’ 2011/0072196 Al 3/2011 Forhan et al.
Imonk, (Us) 2011/0072199 Al 3/2011 Reiter et al.
2012/0173796 A1* 7/2012 Shenooccooooovveerenen 711/103
(72) Inventors: Charles J. Camp, Sugar Land, TX (US); 2012/0324148 Al 12/2012 Stonelake et al.
Timothy J. Fisher, CypreSS, X ([JS)’ 2013/0021846 Al 1/2013 Rao o
Aur b o ichmond 1 (U DT A 200 Bl
Andrew D. Walls, San Jose, CA (US) .
> > 2013/0111118 Al 5/2013 Moshayedi et al.
.))) 2015/0026386 A1* 1/2015 Wakchaure etal. ... 711/103
(73) Assignee: International Business Machines 2015/0143068 Al* 5/2015 Higgins et al. Gl11C 16/14
Corporation, Armonk, NY (US) 711/166
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 » 2005208768 A 812005
US.C. 154(b) by 147 days. KR 1020090006637 A 1/2009
(21) Appl No.: 14/100,172 * cited by examiner
(22) Filed: Dec. 9, 2013 Primary Examiner — Mark Giardino, Jr.
. A (74) Attorney, Agent, or Firm — Russell Ng PLLC; Randall
(65) Prior Publication Data T Bluestone
US 2015/0161036 Al Jun. 11, 2015
(57) ABSTRACT
(51) Int.CL In at least one embodiment, a data storage system includes a
GOG6F 12/00 (2006.01) non-volatile memory array including a plurality of blocks of
GO6F 11/00 (2006.01) physical memory, each including multiple pages. The data
GO6E 13/00 (2006.01) storage system further includes a controller that maintains a
GOGF 13/28 (2006.01) data structure identifying blocks of physical memory in the
GO6F 12/02 (2006.01) memory array that currently do not store valid data. The
(52) US.CL controller, responsive to receipt of a write input/output opera-
CPC GO6F 11/00 (201301), GO6F 11/004 tion (IOP) Specifying an address and write data, selects a
(2013.01); GO6F 12/0246 (2013.01); GO6F particular block from among the blocks identified in the data
2212/7207 (2013.01) structure prior to a dwell time threshold for the particular
(58) Field of Classification Search block being satisfied, programs a page within the selected
CPC ..o GOGF 12/0246; GO6F 2212/7207, block with the write data, and associates the address with the
GO6F 11/004 selected block.
USPC e 711/103

See application file for complete search history.

Begin 900

Select entry from EBL
902

21 Claims, 9 Drawing Sheets

!

Calculate dwell time
using current time and
stored timestamp 904

Transfer PBA into ABQ
and free selected entry
908

US 9,274,866 B2

Sheet 1 of 9

Mar. 1, 2016

U.S. Patent

| 614

021 wa)sAs abetos eje

0F1 Aedie Aowsw ysel ANYN

»|¢

oSl
Aowsw |e»

Ndd

8¢l NdO > ¥Z| 49]10u00 yse|4

951 ¥al
1811 J0H ogy
493 0sh
1493 11
Alowsw

19][0J3u09 yse| 4

+|+

721 2oBLA|

oo_‘\v

A

O,

oLl

01 Jeydepe Q)

y

901 9bel0)s 2207

Wbd | e | ¥0Td

201 Wwayshs J0sse001d

US 9,274,866 B2

Sheet 2 of 9

Mar. 1, 2016

U.S. Patent

00€ ®Inpow yse|4

18 €30 i 0eld €30 1oid 130 0ol 139

Leue|d Laue|d Loueld Laue|d

gsue/d geueld poueld pdueld

19 ¢330 gad 239 18id 039 gaid 039

|oueld | oUEld | SUEld | SUEld

gsue/d oeueld odued psueld

071 waisAs Aowaw ysey ANYN
QLA |avLN [9ELNT| | 9CLIN acn acn LN Qon
F 3 A F 3 . A r 3 r 3

BGLA| |BVIN] [BELIN| | BCLIN BEN BZN ELN BOW

¢ 014

¢ 04

U.S. Patent Mar. 1, 2016 Sheet 3 of 9 US 9,274,866 B2

Vo)
[Lo
D N
(=2} [©
3 5 g | & 5
Si S o 3 a
() 8 [] S ~
c L [&) [5]
) om e o
o om m
P A
0N S5
[a TS

Fig. 4
Fig. 5

US 9,274,866 B2

Sheet 4 of 9

Mar. 1, 2016

U.S. Patent

008 S

808 003 80/ 003

908 040 90/ 040
708 ¥OX vd1 ¥0L Ve

8 0l
208 YOX Erd 207 ered
o0,

Nabedd [-\obedg| e e z0abedq Lpabedq 009bedq

009 adLys abed

/ Bi4

9 b4

US 9,274,866 B2

Sheet 5 of 9

Mar. 1, 2016

U.S. Patent

6 b14

A 4

oA ¢M00|q O} Swh [[emMp

806
Aljua pajosles 9aly pue

Dy Ol Ygd Jejsuel]

906
(POUSHES
Ploysaly; swil
aM(g

%06 dweysawiy peios
pue s JuaLng Buisn
Sull} ||lomp s1e|ndied

a

206

193 woJy Aus J08)9S

006 uibsg

US 9,274,866 B2

Sheet 6 of 9

Mar. 1, 2016

U.S. Patent

0011}

9011

v0LL L

¢0ll vad

Gl 8nany %00|g 8|qe|leAy

E

000}

700} S1

¢00} vad

261 1817 %00/g pase.3

0} 614

US 9,274,866 B2

Sheet 7 of 9

Mar. 1, 2016

U.S. Patent

81zl

adiys abed Joy fyued ayupy, [8o 8uoQ ON

9i1cl

A 4

0221 9|98) Uone|Sue.] SSaIppe

Glzl 9bed soj Ajued aindwo)

|ea1sAyd-o)-|eaibo| arepdn t
¥121 9bed
J0} DD pue DY) 8J03s pue sndwion)
Zeel pug)

AN E

Zhe | 9bed Joj uonewojul
BLUI} [[OMP S10JS pue 81e|nojen)
1
Ol 2l abed 1xau 01 BIEP BIIM | —
1
20z eyep sjum Bulols oy aduys
abed wJoy 03 sabed |eoisAyd syeo0||y

90¢) (s)ebed

ejep Bunsixa ajepijeAu] ¢paddew Apeaije

c0zl
{dOl Sjum
OA1809Y

US 9,274,866 B2

Sheet 8 of 9

Mar. 1, 2016

U.S. Patent

¢l B

I4

— ZIEL 11 eepdn

A

h

01€L pleaur se sebed
P[0 YJew pue sebed
Mau 0} (s)abed s

I 80S| Uoneso|al
; Joj sabed Jamau ajenjea

90€] uoneooal
J0j %20|q Ul sabed pijea
Jap|o ||e pue abed enanp

{paysies
ploysalyy swi
OM(]

PifeA X0

Z0%] pea. 0} ebed

u108[eS

00€} uibeg

US 9,274,866 B2

Sheet 9 of 9

Mar. 1, 2016

U.S. Patent

] ‘014

0Zv] painalse
uoibes Alowaw

|eaisAyd
aunus yep

Ovvl pu3

vyl Jeysanbal

0} ofied ejep 196.e) Jwsuel |

*

Z5p| adins abed anow pue aduys abed sy jo sbed
uonoajold eyep pue sebed eiep Jayo woly abed elep Jor0day

A

917l ISd ul
paJijel Se Jolie

993 buuieyuod
abed Auo yiep

A M

Livl
obed Joj JoLis

9qB108.100UN
JO 80UBLINDJ0
pJoday

SSA

1)
;Si0108) jjeay

uo paseq abed
2119y

JBUI0 JO/pUB 8L} [[BMP

124"
¢, Pe108LI00

ON

Zivl 8jaissod Ji
‘1973 buisn 1081100

710119 B)EP SUIRIU0D

90F| SseJppe

[eoisAyd Buisn abed ejep ssaooy

t

¥0F] sseippe [eo1shyd 0y yg elejsuel |

SOA

2ovl

(,dQl peal
oAI808Y

US 9,274,866 B2

1
PROGRAMMING NON-VOLATILE MEMORY
USING A RELAXED DWELL TIME

BACKGROUND OF THE INVENTION

This disclosure relates to data processing and storage, and
more specifically, to the recording and use of dwell time in a
non-volatile memory system, such as a flash memory system.

Flash memory is a non-volatile memory technology that
stores one or more bits of data per memory cell as a charge on
the floating gate of a transistor. As cell densities and the
number of bits stored per cell in flash memory continue to
increase in subsequent generations of flash technology, the
data stored in the memory cells to become more vulnerable to
bit errors induced by read disturbs, high ambient tempera-
tures, long storage durations and other factors. Consequently,
the number of read/write cycles for which flash memories are
rated have generally been declining even while storage den-
sity and cost per unit of data have been improving.

BRIEF SUMMARY

The present disclosure recognizes that among the many
factors that can be taken into account to extend the useful life
of' non-volatile memory (e.g., flash memory) and to improve
data integrity is dwell time.

In at least one embodiment, a data storage system includes
a non-volatile memory array and a controller coupled to the
memory array. The controller records, for each of a plurality
of'valid pages in the memory array, a respective indication of
a dwell time of each valid page.

In at least one embodiment, a data storage system includes
a non-volatile memory array including a plurality of regions
of'physical memory. The data storage system further includes
a controller that controls read and write access to the memory
array and retires selected ones of the plurality of regions of
physical memory from use. The controller determines
whether or to not to retire a particular region among the
plurality of regions of physical memory from use based on a
dwell time of data stored in the particular region.

In at least one embodiment, a data storage system includes
anon-volatile memory array including a plurality of blocks of
physical memory, each including multiple pages. The data
storage system further includes a controller that maintains a
data structure identifying blocks of physical memory in the
memory array that currently do not store valid data. The
controller, responsive to receipt of a write input/output opera-
tion (IOP) specifying an address and write data, selects a
particular block from among the blocks identified in the data
structure prior to a dwell time threshold for the particular
block being satisfied, programs a page within the selected
block with the write data, and associates the address with the
selected block.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a high level block diagram of a data processing
environment in accordance with one embodiment;

FIGS. 2-5 illustrate an exemplary arrangement of physical
memory within a NAND flash memory array in accordance
with the present disclosure;

FIG. 6 depicts an exemplary implementation of a page
stripes in accordance with the present disclosure;

FIG. 7 illustrates an exemplary data page in accordance
with the present disclosure;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 depicts an exemplary data protection page in accor-
dance with the present disclosure;

FIG. 9 is a high level logical flowchart of an exemplary
process by which a flash controller transfers identifiers of
blocks of physical memory from an erased block list to an
available block queue prior to a dwell time threshold being
satisfied in accordance with one embodiment;

FIGS. 10-11 respectively depict exemplary embodiments
of an erased block list and an available block queue main-
tained by a flash controller;

FIG. 12 is a high level logical flowchart of an exemplary
embodiment of a data write process by which a data page and
anassociated dwell time are written to a NAND flash memory
array;

FIG. 13 is a high level logical flowchart of an exemplary
process by which a flash controller relocates data pages stored
within physical pages that do not satisfy a dwell time thresh-
old; and

FIG. 14 is a high level logical flowchart of an exemplary
embodiment of a data read process in which errors in a target
data page can be handled in accordance with the dwell time of
the physical page storing the target data page.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and

US 9,274,866 B2

3

that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

With reference now to the figures and with particular ref-
erence to FIG. 1, there is illustrated a high level block diagram
of'an exemplary data processing environment 100 including a
data storage system that employs NAND flash memory as
described further herein. As shown, data processing environ-
ment 100 includes at least one processor system 102 having
one or more processors 104 that process instructions and data.
Processor system 102 may additionally include local storage
106 (e.g., dynamic random access memory (DRAM) or disks)
that may store program code, operands and/or execution
results of the processing performed by processor(s) 104. In

10

15

20

25

30

35

40

45

50

55

60

65

4

various embodiments, processor system 102 can be, for
example, a mobile computing device (such as a smartphone or
tablet), a laptop or desktop personal computer system, a
server computer system (such as one of the POWER series
available from International Business Machines Corpora-
tion), or a mainframe computer system. Processor system 102
can also be an embedded processor system using various
processors such as ARM, PowerPC, Intel X86, or any other
processor combined with memory caches, memory control-
lers, local storage, I/O bus hubs, etc.

Processor system 102 further includes an input/output
(I/0) adapter 108 that is coupled directly (i.e., without any
intervening device) or indirectly (i.e., through at least one
intermediate device) to a data storage system 120 via an [/O
channel 110. In various embodiments, I/O channel may
employ any one or a combination of known or future devel-
oped communication protocols, including, for example, Fibre
Channel (FC), FC over Ethernet (FCoE), Internet Small Com-
puter System Interface (iSCSI), Transport Control Protocol/
Internet Protocol (TCP/IP), Peripheral Component Intercon-
nect Express (PCle), etc. 1/O operations (IOPs)
communicated via /O channel 110 include read 1OPs by
which processor system 102 requests data from data storage
system 120 and write IOPs by which processor system 102
requests storage of data in data storage system 120.

In the illustrated embodiment, data storage system 120
includes an interface 122 through which data storage system
120 receives and responds to IOPs 102 via I/O channel 110.
Interface 122 is coupled to a flash controller 124 (e.g., an
Application Specific Integrated Circuit (ASIC) or Field Pro-
grammable Gate Array (FPGA)) having an associated flash
controller memory 126 (e.g., Dynamic Random Access
Memory (DRAM)). Flash controller 124 is additionally
coupled to a CPU 128 having an associated CPU memory 130
(e.g., DRAM) and further coupled to a NAND flash memory
array 140. In embodiments in which flash controller 124 is
implemented with an FPGA, CPU 128 may program and
configure flash controller 124 during start-up of data storage
system 120. After startup, in general operation flash control-
ler 124 receives read and write IOPs via I/O channel 110 and
interface 122 to read data stored in NAND flash memory array
140 and/or to store data in NAND flash memory array 140.
Flash controller 124 services these 10Ps, for example, by
accessing NAND flash memory array 140 to read or write the
requested data from or into NAND flash memory array 140 or
by accessing amemory cache (not illustrated) associated with
NAND flash memory array 140.

Flash controller 124 implements a flash translation layer
(FTL) that provides logical-to-physical address translation to
enable access to specific memory locations within NAND
flash memory array 140. In general, an IOP received by flash
controller 124 from a host device, such as a processor system
102, contains the logical block address (LBA) at which the
data is to be accessed (read or written) and, if a write IOP, the
write data to be stored to data storage system 120. The IOP
may also specify the amount (or size) of the data to be
accessed. Other information may also be communicated
depending on the protocol and features supported by data
storage system 120. As is known to those skilled in the art,
NAND flash memory, such as that employed in NAND flash
memory array 140, is constrained by its construction such that
the smallest granule of data that can be accessed by a read or
write IOP is fixed at the size of a single flash memory page, for
example, 16 kilobytes (kB). The LBA provided by the host
device thus corresponds to a page within a logical address
space. The flash translation layer translates this LBA into a
physical address assigned to a corresponding physical loca-

US 9,274,866 B2

5

tion in NAND flash memory array 140. Flash controller 124
may perform address translation and/or store mappings
between logical and physical addresses in a logical-to-physi-
cal translation data structure, such as translation table (TT)
150, which may conveniently be stored in flash controller
memory 126.

As further shown in FIG. 1, flash controller 124 may main-
tain one or more additional data structures to track informa-
tion regarding NAND flash memory array 140, which data
structures may also be buffered in flash controller memory
126. These data structures can include, for example, an erased
block list (EBL) 152 that identifies blocks of physical
memory in NAND flash memory array 140 that have been
erased, an available block queue (ABQ) that identifies blocks
of physical memory in NAND flash memory array 140 that
are available for programming with write data of write IOPs,
and a hot list 156 that identifies frequently accessed LBAs. As
will be appreciated by those skilled in the art, in various
embodiments flash controller 124 may combine one or more
of these data structures in a common data structure and/or
implement additional data structures to manage NAND flash
memory array 140.

NAND flash memory array 140 may take many forms in
various embodiments. Referring now to FIGS. 2-5, there is
depicted one exemplary arrangement of physical memory
within a NAND flash memory array 140 in accordance with
the present disclosure.

As shown in FIG. 2, NAND flash memory array 140 may
be formed from thirty-two (32) individually addressable
NAND flash memory storage devices. In the illustrated
example, each of the flash memory storage devices MOa-
M15b takes the form of a board-mounted flash memory mod-
ule, for example, a Single Level Cell (SLC), Multi-Level Cell
(MLC), Three Level Cell (TLC), or Quad Level Cell (QLC)
NAND flash memory module. The thirty-two NAND flash
memory modules are arranged in sixteen groups of two (MOa,
MOb) through (M15a, M15b). For purposes of the physical
addressing scheme, each group of two modules forms a
“lane,” also sometimes referred to as a “channel,” such that
NAND flash memory array 140 includes sixteen channels or
lanes (Lane0-Lanel5).

In a preferred embodiment, each of the individual lanes has
a respective associated bus coupling it to flash controller 124.
Thus, by directing its communications to one of the specific
communication buses, flash controller 124 can direct its com-
munications to one of the lanes of memory modules. Because
each communication bus for a given lane is independent of the
communication buses for the other lanes, flash controller 124
can issue commands and send or receive data across the
various communication buses at the same time, enabling flash
controller 124 to access the memory modules corresponding
to the individual lanes at, or very nearly at, the same time.

With reference now to FIG. 3, there is illustrated an exem-
plary embodiment of a flash memory module 300 that can be
utilized to implement any of flash memory modules MOa-
M15b of FIG. 2. As shown in FIG. 3, the physical storage
locations provided by flash memory module 300 are further
subdivided into physical locations that can be addressed and/
or identified through Chip Enables (CEs). In the example of
FIG. 3, the physical memory of each flash memory chip 300
is divided into four Chip Enables (CEO, CE1, CE2 and CE3),
each having a respective CE line that is asserted by flash
controller 124 to enable access to or from the physical
memory locations within the corresponding CE. Each CE is
in turn subdivided into multiple dice (e.g., Die0 and Diel)
each having two planes (e.g., Plane0 and Planel). Each plane
represents a collection of blocks (described below) that,

20

25

40

45

6

because of the physical layout of the flash memory chips, are
physically associated with one another and that utilize com-
mon circuitry (e.g., [/O buffers) for the performance of vari-
ous operations, such as read and write operations.

As further shown in FIGS. 4-5, an exemplary plane 400,
which can be utilized to implement any of the planes within
flash memory module 300 of FIG. 3, includes, for example,
2048 blocks of physical memory. In general, a block 500 is a
collection of physical pages that are associated with one
another, typically in a physical manner. This association is
such that a block is defined to be the smallest granularity of
physical storage locations that can be erased within NAND
flash memory array 140. In the embodiment of FIG. 5, each
block 500 includes, for example, 256 physical pages, where a
physical page is defined to be the smallest individually
addressable data unit for read and write access. In the exem-
plary system, each physical page of data has a common
capacity (e.g., 16 kB) for data storage plus additional storage
for metadata described in more detail below. Thus, data is
written into or read from NAND flash memory array 140 on
a page-by-page basis, but erased on a block-by-block basis.
As further shown in FIG. 5, each block 500 preferably
includes page status information 502, which indicates the
status of each physical page in that block 500 as retired (i.e.,
withdrawn from use) or non-retired (i.e., active or still in use).
In various implementations, PSI 502 can be collected into a
single data structure (e.g., a vector or table) within block 500,
distributed within block 500 (e.g., as one or more bits of
metadata appended to each physical page) or maintained
elsewhere in data storage system 120 (e.g., in a data structure
in flash controller memory 126).

As noted above, data storage system 120 does not generally
allow external devices to directly address and/or access the
physical memory locations within NAND flash memory
array 140. Instead, data storage system 120 is generally con-
figured to present a single contiguous logical address space to
the external devices, thus allowing host devices to read and
write data to and from LBAs within the logical address space
while permitting flash controller 124 and CPU 128 to control
where the data that is associated with the various LBAs actu-
ally resides in the physical memory locations comprising
NAND flash memory array 140. In this manner, performance
and longevity of NAND flash memory array 140 can be
intelligently managed and optimized.

As writes occur to data storage system 120, it will be
necessary for flash controller 124 and CPU 128 to invalidate
the data stored in one of the physical pages of one of the erase
blocks in the NAND flash memory array 140. The new data
will then be coalesced with data being written and eventually
stored in different location in NAND flash memory array 140.
It can be seen then that pages or portions of pages will be
invalidated and therefore portions of the NAND flash
memory array 140 become unused. Flash controller 124 and
CPU 128 will eventually need to reclaim this space through a
process called garbage collection. Particular erase blocks will
be chosen based on a number of factors including how much
of the data within the erase blocks is invalid. Flash controller
124 logs the physical block addresses (PBAs) of erased
blocks in EBL 152. Valid data will be read and written along
with new writes from the host into blocks allocated from ABQ
154.

Because the flash translation layer implemented by data
storage system 120 isolates the logical address space made
available to host devices from the physical memory within
NAND flash memory array 140, the size of NAND flash
memory array 140 need not be equal to the size of the logical
address space presented to host devices. In most embodi-

US 9,274,866 B2

7

ments it is beneficial to present a logical address space that is
less than the total available physical memory (i.e., to over-
provision NAND flash memory array 140). Over-provision-
ing in this manner ensures that physical memory resources are
available when the logical address space is fully utilized, even
given the presence of a certain amount of invalid data as
described above. In addition to invalid data that has not yet
been reclaimed the overprovisioned space can be used to
ensure there is enough logical space even given the presence
of memory failures and the memory overhead entailed by the
use of data protection schemes, such as Error Correcting
Code (ECC), Cycle Redundancy Check (CRC), and parity.

In a preferred embodiment, data is typically written to
groups of associated physical pages of NAND flash memory
array 140 referred to herein as “page stripes.” While the
lengths of the various page stripes stored into NAND flash
memory array 140 can and preferably do vary, in one embodi-
ment each page stripe includes two to fifteen data pages of
write data (typically provided by a host device) and one
additional page (a “data protection page”) used to store data
protection information for the write data. For example, FIG. 6
illustrates an exemplary page stripe 600 including N data
pages (i.e., Dpage00 through DpageN-1) and one data pro-
tection page (i.e., PpageN).

FIG. 7 illustrates an exemplary format of each data page
within the page stripe 700. In this example, data page 700
includes a 16 kB data field 702, as well as additional fields for
metadata describing the data page. In the illustrated example,
these metadata fields include an LBA field 704 containing the
LBA of data page 700, a CRC field 706 containing the CRC
value computed for the combination of data field 702 and
LBA field 704, and an ECC field 708 containing an ECC
value calculated, in the illustrated example, from a combina-
tion of contents of data field 702, LBA field 704 and CRC
field 706.

FIG. 8 depicts an exemplary format of the data protection
page of page stripe 800. In the depicted example, data pro-
tection page 800 includes a data XOR field 802 that contains
the bit-by-bit Exclusive Or (XOR) of the contents of the data
fields 702 of the data pages 700 in page stripe 600. Data
protection page 800 further includes an LBA XOR field 804
that contains the bit-by-bit XOR of the LBA fields 704 of the
data pages 700 in page stripe 600. Data protection page 800
finally includes a CRC field 806 and ECC field 808 for respec-
tively storing a CRC value and an ECC value for data protec-
tion page 800. Such a protection scheme is commonly
referred to as RAID 5, since the parity field will not always be
located on one particular flash plane. However, it should be
appreciated that alternate data protection schemes such as
Reed-Solomon can be used.

The formats for data pages and data protection pages
described above protect data stored in a page stripe using
multiple different protection mechanisms. First, the use of the
ECC bits in each data page allows the correction of some
number of bit errors within the flash page. Depending on the
ECC method used it may be possible correct hundreds of bits
or even thousands of bits within a NAND flash page. After
ECC checking and correction is performed, the corrected
CRC field is used to validate the corrected data. Used
together, these two mechanisms allow for the correction of
relatively benign errors and the detection of more serious
errors using only local intra-page information. Should an
uncorrectable error occur in a data page, for example, due to
failure of the physical page utilized to store the data page, the
contents of the data field and LBA field of the failing data
page may be reconstructed from the other data pages and the
data protection page for the page stripe.

10

15

20

25

30

35

40

45

50

55

60

65

8

While the physical memory locations in which the data
pages and data protection page of a page stripe will vary
within NAND flash memory array 140, in one embodiment
the data pages and data protection page that comprise a given
page stripe are preferably stored in physical memory loca-
tions selected to optimize the overall operation of the data
storage system 120. For example, in some embodiments, the
data pages and data protection page comprising a page stripe
are stored such that different physical lanes are employed to
store each of the data page and data protection page. Such
embodiments support efficient access to a page stripe because
flash controller 124 can access all of the pages of data that
comprise the page stripe simultaneously or nearly simulta-
neously. It should be noted that the assignment of pages to
lanes need not be sequential (i.e., data pages can be stored in
any lane in any order), and unless a page stripe is a full length
page stripe (e.g., containing fifteen data pages and one data
protection page), the lanes utilized to store the page stripe
need not be adjacent.

Having described the general physical structure and opera-
tion of data storage system 120, certain operational aspects of
data storage system 120 are now described, including aspects
relating to allocation of blocks for programming, writing
(programming) pages of NAND flash memory array 140, and
reading data from NAND flash memory array 140.

With reference now to FIG. 9, there is illustrated a high
level logical flowchart of an exemplary method of by which
blocks of physical memory in NAND flash memory array 140
are made available for allocation for programming with write
data. The method may be performed, for example, by flash
controller 124 and/or CPU 128 in hardware, firmware, soft-
ware or a combination thereof. For simplicity of explanation,
it will hereafter be assumed that the process is performed by
flash controller 124. As with the other flowcharts provided
herein, steps are presented in logical rather than strictly chro-
nological order, and in some embodiments at least some of the
steps may be performed in an alternative order or concur-
rently.

When the process of FIG. 9 begins at block 900, flash
controller 124 has populated erased block list (EBL) 152
through the garbage collection process with a plurality of
entries identifying erased blocks of physical memory in
NAND flash memory array 140. FIG. 10 illustrates one exem-
plary embodiment of EBL 152. In this exemplary embodi-
ment, EBL, 152 includes a plurality of entries 1000 each
identifying a respective erased block of physical memory in
NAND flash memory array 140 by its PBA 1002. Each entry
1000 preferably further includes an erase timestamp 1004
indicating an erase time of the block identified by the PBA
1002.

Returning to FIG. 9, the process proceeds from block 900
to block 902, which illustrates flash controller 124 selecting
anentry 1000 from EBL 152, for example, the next sequential
entry or the oldest entry. At block 904, flash controller 124
calculates the current dwell time of the block identified by the
selected entry 1000, for example, by computing a difference
between a current time (or in alternative embodiments, the
time of a previous erasure or programming of the page) and
the erase timestamp 1004 specified by the selected entry
1000. At block 906, flash controller 124 determines whether
or not a dwell time threshold for the block has been satisfied
(e.g., whether the dwell time computed at block 904 is equal
to and/or greater than the dwell time threshold). In various
embodiments, the dwell time threshold can be fixed (e.g.,
predetermined by the flash memory manufacturer) or variable
over the operating life of the flash module 300 containing the

US 9,274,866 B2

9

memory block. Further, in at least some embodiments, the
dwell time for different blocks can differ.

Inresponse to a determination that the dwell time threshold
ofthe block has been satisfied, flash controller 124 transfers at
least the PBA 1002 from the selected entry 1000 in EBL 152
to an entry of available block queue (ABQ) 154 to make the
block available for programming and frees the selected entry
1000 in EBL 152 (block 908). FIG. 11 illustrates one exem-
plary embodiment of ABQ 154 including a plurality of entries
1100, which each store a PBA 1102 of a block of physical
memory in NAND flash memory 124 that is available for
programming, timing information (T) 1104, and optionally,
additional information 1106 related to the identified block. In
various embodiments, timing information 1104 can include
the current dwell time calculated at block 904, a flag indicat-
ing the outcome of the dwell time threshold determination at
block 906, and/or the erase timestamp 1004 associated with
the block in EBL 152.

If the dwell time threshold for the block identified by the
selected entry 1000 is not satisfied (as represented by a nega-
tive determination at block 906), flash controller 124 may
elect to nevertheless make the block available for program-
ming based on one or more dynamic factors. For example, as
shown at block 910, flash controller 124 may decide on a
block-by-block basis to relax the dwell time based on whether
flash controller 124 needs more blocks available for program-
ming in ABQ 154, for example, as indicated by a high-to-low
crossing of a low fill threshold of ABQ 154, a rate of receipt
of write IOPs, and/or other measure of the current workload
of data storage system 120. Further, flash controller 124 may
alternatively or additionally relax the dwell time of a block
based on receipt of one or more write IOPs for frequently
accessed (“hot”) addresses (e.g., as indicated by the addresses
being present in hot list 156). In response to a determination
at block 910 to relax the dwell time of the identified block of
physical memory, the process passes to block 908, which has
been described. Otherwise, the process of FIG. 9 returns to
block 902 and following blocks, which have been described.

Referring now to FIG. 12, there is illustrated a high level
logical flowchart of an exemplary method of performing a
write operation in data storage system 120. The method may
be performed, for example, by flash controller 124 and/or
CPU 128 in hardware, firmware, software or a combination
thereof. For simplicity of explanation, it will hereafter be
assumed that the process is performed by flash controller 124.

The method begins at block 1200 and then proceeds to
block 1202, which illustrates flash controller 124 awaiting
receipt of a write IOP from a host device, such as processor
system 102. The write IOP includes, for example, data to be
written into NAND flash memory array 140 and an indication
of the target LBA(s) at which the host device would like for
the data to be stored. In response to receipt of a write IOP, the
process proceeds from block 1202 to blocks 1204-1106,
which illustrates flash controller 124 determining (e.g., by
reference to logical-to-physical address translation table 150)
whether the target LBA(s) indicated in the write IOP is/are
currently mapped to physical memory page(s) and, if so,
changing the status of each data page currently associated
with a target LBA to indicate that it is no longer valid. As is
known in the art, invalidated pages (and the blocks containing
them) will eventually be erased and again made available for
allocation to store data by a garbage collection process of
flash controller 124.

At block 1208, flash controller 124 allocates physical
pages to form a page stripe to store the write data. As indicated
atblock 1210, flash controller 124 then begins to store the first
data page of the write data to the first physical page allocated

40

45

10

to the page stripe. At blocks 1212-1214, flash controller 124
additionally determines metadata for the page and stores the
metadata in the memory block containing the page, either in
the page itself or elsewhere in the memory block (e.g., as part
of PS1502). For example, at block 1212, flash controller 124
calculates and stores dwell time information for the page of
physical memory, where the dwell time information can be
defined utilizing one or more of the intervals from erasure-
to-erasure, from programming-to-programming, from era-
sure-to-programming, or from programming-to-erasure. In at
least some embodiments, the dwell time information can
include a flag indicating whether or not a dwell time threshold
for the page was satisfied prior to programming the page. The
dwell time threshold employed at block 1212 can be the same
as or differ from that employed at block 906 of FIG. 9 and can
additionally be dynamic and change over time, for example,
with positive correlation to the observed residual bit error rate
(RBER). In at least some embodiments, the dwell time infor-
mation can alternatively or additionally include a dwell time
of the page and/or a timestamp of a time that the page was
programmed. As further shown at block 1214, the metadata
may further include CRC and ECC values for the data page,
which flash controller 124 may store in CRC field 706 and
ECC field 708 ofthe data page. At block 1215, flash controller
124 also computes the parity information for the data page.

At block 1216, flash controller 124 determines whether all
of the write data has been written into NAND flash memory
system 140. If flash controller 124 determines that less than
all of the write data has been written to NAND flash memory
system 140, the process returns to block 1210, which has been
described. In response to a determination that all of the write
data has been stored in NAND flash memory system 140 (and
a determination that the parity computation for all data pages
in the page stripe is complete), flash controller 124 stores the
parity information for the page stripe in the data protection
page of the page stripe (block 1218). Flash controller 124 also
updates the logical-to-physical address translation table to
associate the physical page(s) utilized to store the write data
with the LBA(s) indicated by the host device (block 1220).
Thereafter, the process of FIG. 12 ends at block 1222.

It should be noted that at least blocks 1208, 1210, 1212 and
1214 will include steps that check whether or not the pro-
gramming of the physical page completed correctly. If flash
controller 124 determines that the write did not complete
correctly, then flash controller 124 will employ various recov-
ery techniques, such as finishing the page stripe, including
parity, and rebuilding the page stripe in a new location. If the
write is unsuccessful, then flash controller 124 can also retire
aphysical page for which the write failed in the same manner
as when a read is unsuccesstul (as discussed below).

With reference now to FIG. 13, there is illustrated a high
level logical flowchart of an exemplary method of relocating
pages that do not satisfy a dwell time threshold in one
embodiment. The method may be performed, for example, by
flash controller 124 and/or CPU 128 in hardware, firmware,
software or a combination thereof. For simplicity of explana-
tion, it will hereafter be assumed that the process is performed
by flash controller 124.

The process of FIG. 13 begins at block 1300 and then
proceeds to block 1302, which illustrates flash controller 124
selecting for reading a next page of physical memory in
NAND flash memory array 140 that stores a valid data page.
The selection performed at block 1302 can be made, for
example, by a background reader process that operates when
flash controller 124 is less than fully busy servicing read and
write IOPs of processor systems 102. At block 1304, flash
controller 124 determines whether or not a dwell time thresh-

US 9,274,866 B2

11

old for the page is satisfied. In various embodiments, the
dwell time threshold employed at block 1304 can be the same
as or differ from those employed at block 906 of FIG. 9 and
block 1212 of FIG. 12. In embodiments in which the dwell
time information stored at block 1212 of FIG. 12 includes a
flag indicating whether or not the dwell time of the page is
satisfied, the determination at block 1304 can include exam-
ining the flag. In at least some embodiments, the determina-
tion illustrated at block 1304 can include reading the dwell
time from the memory block containing the memory page
and/or computing the dwell time from a timestamp stored in
the memory block containing the memory page and then
comparing the dwell time to a dwell time threshold.

In response to a determination at block 1304 that the dwell
time threshold for the selected page of physical memory is
satisfied, the process returns to block 1302, which has been
described. If, however, flash controller 124 determines at
block 1304 that the dwell time threshold of the memory page
is notsatisfied (e.g., the dwell time for the page was relaxed as
discussed above with reference to block 910 of FIG. 9), the
process of FIG. 13 proceeds from block 1304 to block 1306.
At block 1306, flash controller 124 queues the currently
selected page of physical memory and all older valid pages of
the same memory block forrelocation of the data pages stored
therein. In embodiments in which flash controller 124 writes
to pages of blocks sequentially, flash controller 124 identifies
the older valid pages as all valid pages of the block that
precede the currently selected page. As shown at block 1308,
flash controller 124 may also optionally evaluate more
recently programmed pages of the same memory block for
relocation of the data pages stored therein, for example, by
comparing the dwell time information of such pages to a
dwell time threshold. Flash controller 124 adds any more
recently programmed pages identified for relocation at block
1308 to the relocation queue. In some embodiments, flash
controller 124 begins the read operation depicted at block
1302 with the most recently written (e.g., highest) valid page
in a block and works backwards through the pages of the
block to the least recently written (e.g., lowest) valid page. In
such embodiments, optional block 1308 may be omitted.

Atblock 1310, flash controller 124 relocates the data pages
stored in the physical pages identified in the relocation queue
to new physical pages and marks the old physical pages as
invalid, for example, in PSI 502. The new physical pages to
which the data pages are relocated can be either in the same
block or a different block of physical memory, but are pref-
erably pages for which the dwell time threshold is satisfied.
Flash controller 124 can perform the relocation of data pages
depicted at block 1310 as a low priority task that runs when
the required resources of data storage system 120 are not
otherwise needed to service the stream of read and write IOPs
of processing system(s) 102. As shown at block 1312, as data
pages are relocated, flash controller 124 updates translation
table 150 with the new LBA-to-PBA mapping of each relo-
cated data page. Following block 1312, the process of FIG. 13
continues at block 1302, which has been described.

Referring now to FIG. 14, there is illustrated a high level
logical flowchart of an exemplary method of performing a
read operation in data storage system 120 in which physical
memory may be retired on a page basis. The method may be
performed, for example, by flash controller 124 and/or CPU
128 in hardware, firmware, software or a combination
thereof. For simplicity of explanation, it will hereafter be
assumed that the process is performed by flash controller 124.

The illustrated process begins at block 1400 and then pro-
ceeds to block 1402, which illustrates flash controller 124
awaiting receipt of a read IOP from an external host device,

10

15

20

25

30

35

40

45

50

55

60

65

12

such as processor system 102. In general, the read IOP will
specify the LBA of a target data page that is requested by the
host device. In response to receipt of the read IOP, flash
controller 124 translates the LBA (e.g., by reference to logi-
cal-to-physical translation table (TT) 150 in flash controller
memory 126) to determine the physical address of the physi-
cal page that stores the requested data page (block 1404).
Once the physical address is determined, flash controller 124
accesses the target data page utilizing the physical address by
issuing a read request to read the target data page from the
physical page associated with the physical address (block
1406). The read IOP may request various sizes of data, but for
simplification it is assumed that the process of FIG. 14 is
exercised once for each data page referenced by the read IOP.

At block 1410, flash controller 124 computes the ECC for
the data page and compares the computed ECC with the ECC
contents of ECC field 708 to determine whether or not the
data page contains a data error. Such data errors can be due to
any number of problems, including trapped charge in the
oxide layer of the physical device or charge that has leaked
from the floating gate. These errors may be permanent in
nature such that the cell is no longer capable of storing and
reading data correctly or the errors may be due to issues
related to data retention or electrical noise inflicted by writes
orreads of adjacent cells. Such errors will not be present when
the cell is erased and then rewritten. True soft errors are
substantially random and are typically not uniquely associ-
ated with any specific physical pages, blocks or other physical
regions of NAND flash memory array 140. A hard error, on
the other hand, is a corruption of one or multiple bits of data
caused by a physical failure. Hard errors can be caused by a
variety of factors including, but not limited to, the physical
failure of one or more components within a given memory
chip (such as the failure of a charge pump), the physical
failure of an entire memory chip or the external support
structures for that chip (e.g., the breaking of a power line or an
address line to a chip), the physical failure of all or part of a
chip as a result of environmental factors (e.g., excessive tem-
perature, magnetic field, humidity, etc). In general, because
hard errors arise from the physical structure of the memory
system, hard errors are uniquely associated with a particular
collection of memory chips, a particular memory chip, or
specific physical regions within a chip (such as a CE, plane,
block or page).

In response to a determination at block 1410 that the data
page does not contain a data error, the process passes to block
1430, which is described below. However, in response to a
determination at block 1410 that the data page contains a data
error, flash controller 124 corrects the data error in the data
page utilizing the ECC, if possible (e.g., if there are 50 bits in
error within the codeword and the ECC is capable of correct-
ing greater than 50 bits in error within the code word). At
block 1414, flash controller 124 determines whether or not
the detected data error has been corrected utilizing the ECC.
If so, the process proceeds from block 1414 to block 1430,
which is described below. If, on the other hand, flash control-
ler 124 determines at block 1414 the data error is uncorrect-
able, flash controller 124 further determines at block 1415
whether or not the physical page that stores the data page in
which the error occurred should be retired from use. The
determination depicted at block 1415 can be made, for
example, based on whether or not a dwell time threshold of
the physical page storing the data page was satisfied and/or
based on one or more health scores for the physical page (e.g.,
a frequency or number of data errors from a given physical
memory region containing the physical page and/or a write/
erase cycle count for the given physical memory region con-

US 9,274,866 B2

13

taining the physical page). For example, flash controller 124
may infer from the fact that the dwell time threshold of the
physical page was not satisfied that the error may arise from
programming the physical page with a relaxed dwell time
rather than from a physical failure of a memory cell or circuit.
Inresponse to a determination at block 1415 that the physical
page should be retired from use, the process proceeds to block
1416, which is described below. If, on the other hand, flash
controller 124 determines that the physical page should notbe
retired, the process passes to block 1417, which illustrates
flash controller 124 updating a health score of the physical
page by recording the occurrence of an uncorrectable error in
the physical page. Thereafter, the process passes to block
1432, which is described below.

Atblock 1416, flash controller 124 marks only the physical
page that stores the target data page as retired (i.e., no longer
available for allocation to store a data page of a new page
stripe), for example, in the PSI 502 of the block containing
that physical page. Thus, in contrast to prior art systems that
retire physical memory in a NAND flash memory on a block-
by-block basis, data storage system 120 can retire physical
memory in NAND flash memory array 140 on a page-by-page
basis in response to detection of a single data error. As will be
appreciated, retirement of a physical page of physical
memory (e.g., 16 kB) rather than a block (e.g., 4 MB) con-
serves physical memory resources, enhancing the perfor-
mance and extending the life of NAND flash memory array
140. However, as a consequence of page retirement, the effec-
tive sizes of blocks of physical memory of NAND flash
memory system 140 will vary.

This exemplary implementation waits until a physical page
has one or more codewords containing uncorrectable errors
before performing the retirement. However, certain imple-
mentations may choose to retire a page at some point prior to
uncorrectability. For example, if an implementation uses
BCH ECC over approximately 1024 bytes and can correct 50
bits in error, flash controller 124 may decide to retire a page
when the number of uncorrectable bits reaches a number less
than 50, say 48. Additionally, one skilled in the art will also
know that, depending on the flash technology used, that flash
controller 124 may elect to perform additional steps at blocks
1412-1414 before retiring the page. For example, the flash
manufacturer may require flash controller 124 to change cer-
tain parameters for that page or block and perform a re-read of
the page. If the data is still correctable, then flash controller
124 would follow the negative path from block 1414. In this
way, blocks 1412-1414 may contain many additional steps
not described herein in determining that the page contains a
hard error or truly uncorrectable error.

At block 1418, flash controller 124 further determines by
reference to PSI 502 whether or not the number of retired
pages of physical memory in a physical memory region con-
taining the page retired at block 1416 now satisfies (e.g., is
greater than and/or equal to) a threshold T1. The physical
memory region to which the first threshold T1 pertains can be,
for example, a block, plane, die, CE or entire flash module. In
response to flash controller 124 determining at block 1418
that the threshold T1 is not satisfied, the process passes to
block 1430. However, in response to flash controller 124
determining at block 1418 that threshold T1 is satisfied, flash
controller 124 marks the entire physical memory region con-
taining the retired physical page as retired and thus unavail-
able for allocation to store new page stripes (block 1420). If
the physical memory region for which retirement is deter-
mined at block 1418-1420 is a smaller region than an entire
flash memory module, flash controller 124 may optionally
determine whether or not to retire larger physical memory

30

40

45

55

14

regions containing the retired physical page. It may also be
determined that there are now too many retired memory
resources within NAND flash memory system 140 to be able
to achieve required performance levels, and flash controller
124 may send a response to the user indicating that it is time
to replace the physical resource containing NAND flash
memory system 140. The process then proceeds to block
1432.

At block 1430, flash controller 124 attempts to validate the
data field 702 and L.BA field 704 of the target data page by
computing a cyclic redundancy code and comparing the com-
puted CRC to that contained in CRC field 706. In response to
successful validation ofthe data page, the process proceeds to
block 1434, which is described below. However, in response
to failure of the CRC validation at block 1430 or in connection
with the processing described at blocks 1417, 1418 and/or
1420, flash controller 124 reads the entire page stripe and
recovers the correct content of the target data page from the
other data page(s) and the data protection page of the page
stripe (block 1432). In addition, flash controller 124 moves
the page stripe (including the recovered target data page) to a
different physical location in NAND flash memory system
120 and invalidates the physical pages forming the old page
stripe (if such pages are not retired). From block 1430 or
block 1432, the process proceeds to block 1434, which illus-
trates flash controller 124 transmitting the target data page to
the requesting host device. Thereafter, the process of FIG. 14
terminates at block 1440. The method of FIG. 14 may again
be performed at some later unspecified time depending on
other operations in process.

As noted above, the order of operations set forth in FIG. 14
is exemplary and embodiments are envisioned where the
order of operations is different from that set out above. For
example, embodiments are envisioned in which flash control-
ler 124 transmits the data page to the host device prior to
completing CRC validation and thereafter transmits an indi-
cation of whether the data page is valid or not. Also in some
embodiments, the read IOP may access multiple data pages
rather than a single data page.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

As has been described, in at least one embodiment, a data
storage system includes a non-volatile memory array and a
controller coupled to the memory array. The controller
records, for each of a plurality of valid pages in the memory
array, a respective indication of a dwell time of each valid
page.

In at least one embodiment, a data storage system includes
a non-volatile memory array including a plurality of regions

US 9,274,866 B2

15

of'physical memory. The data storage system further includes
a controller that controls read and write access to the memory
array and retires selected ones of the plurality of regions of
physical memory from use. The controller determines
whether or to not to retire a particular region among the
plurality of regions of physical memory from use based on a
dwell time of data stored in the particular region.

In at least one embodiment, a data storage system includes
anon-volatile memory array including a plurality of blocks of
physical memory, each including multiple pages. The data
storage system further includes a controller that maintains a
data structure identifying blocks of physical memory in the
memory array that currently do not store valid data. The
controller, responsive to receipt of a write input/output opera-
tion (IOP) specifying an address and write data, selects a
particular block from among the blocks identified in the data
structure prior to a dwell time threshold for the particular
block being satisfied, programs a page within the selected
block with the write data, and associates the address with the
selected block.

While the present invention has been particularly shown as
described with reference to one or more preferred embodi-
ments, it will be understood by those skilled in the art that
various changes in form and detail may be made therein
without departing from the spirit and scope of the invention.
For example, although aspects have been described with
respect to a data storage system including a flash controller
that directs certain functions, it should be understood that
present invention may alternatively be implemented as a pro-
gram product including a storage device storing program
code that can be processed by a processor to perform such
functions or cause such functions to be performed. As
employed herein, a “storage device” is specifically defined to
include only statutory articles of manufacture and to exclude
transitory propagating media per se.

In addition, although embodiments have been described
that include use of a NAND flash memory, it should be appre-
ciated that the inventions herein are not limited to use with
NAND flash memory, but are instead applicable to any other
non-volatile random access memory (NVRAM) technology.
For example, the disclosed techniques may be applied to
phase-change memory (PCM), magnetoresistive RAM
(MRAM) and resistive RAM (RRAM).

The figures described above and the written description of
specific structures and functions below are not presented to
limit the scope of what Applicants have invented or the scope
of the appended claims. Rather, the figures and written
description are provided to teach any person skilled in the art
to make and use the inventions for which patent protection is
sought. Those skilled in the art will appreciate that not all
features of a commercial embodiment of the inventions are
described or shown for the sake of clarity and understanding.
Persons of skill in this art will also appreciate that the devel-
opment of an actual commercial embodiment incorporating
aspects of the present inventions will require numerous
implementation-specific decisions to achieve the developer’s
ultimate goal for the commercial embodiment. Such imple-
mentation-specific decisions may include, and likely are not
limited to, compliance with system-related, business-related,
government-related and other constraints, which may vary by
specific implementation, location and from time to time.
While a developer’s efforts might be complex and time-con-
suming in an absolute sense, such efforts would be, neverthe-
less, a routine undertaking for those of skill in this art having
benefit of this disclosure. It must be understood that the
inventions disclosed and taught herein are susceptible to
numerous and various modifications and alternative forms.

10

15

20

25

30

35

40

45

50

55

60

65

16

Lastly, the use of a singular term, such as, but not limited to,
“a,” is not intended as limiting of the number of items.
What is claimed is:
1. A method of operating a data storage system including a
non-volatile memory array controlled by a controller, the
method comprising:
the controller maintaining a data structure identifying
blocks of physical memory in the memory array that
have already been erased and currently do not store valid
data;
the controller generally refraining from selecting erased
blocks from the data structure for programming until
dwell time thresholds for the erased blocks are
exceeded;
in response to receipt of a write input/output operation
(I0OP) specitying an address and write data:
the controller selecting a particular block from among
the erased blocks identified in the data structure,
wherein the selecting includes selecting the particular
block prior to a dwell time threshold for the particular
block being exceeded; and

programming the selected block with the write data and
associating the address with the selected block.

2. The method of claim 1, wherein:

maintaining the data structure includes maintaining an
erased block data structure identifying erased blocks and
an available block data structure identifying erased
blocks available for programming; and

the method further includes transferring an entry for the
particular block from the erased block data structure to
the available block data structure prior to the dwell time
threshold for the particular block being exceeded.

3. The method of claim 1, wherein:

the method further comprises determining whether the
address is a frequently accessed address; and

the selecting includes selecting the particular block prior to
the dwell time threshold for the particular block being
exceeded in response to determining that the address is a
frequently accessed address.

4. The method of claim 1, wherein the programming
includes storing, within the selected block, a dwell time of a
page of the particular block.

5. The method of claim 4, and further comprising:

thereafter reading the dwell time of the page stored within
the particular block;

determining that the dwell time is less than the dwell time
threshold; and

in response to determining that the dwell time of the page
stored within the particular block is less than the dwell
time threshold, relocating contents of the page to another
page.

6. The method of claim 5, and further comprising:

in response to the determining, relocating contents of a
plurality of pages of the particular block that were pro-
grammed prior to the page.

7. The method of claim 1, wherein:

the dwell time of the particular block is a time since erasure
of the particular block; and

selecting the particular block prior to a dwell time thresh-
old for the particular block being exceeded includes
selecting the particular block prior to the dwell time of
the particular block exceeding the dwell time threshold.

8. A data storage system, comprising:

a controller implemented at least in part in hardware,
wherein the controller is configured to be coupled to a
non-volatile memory array including a plurality of
blocks of physical memory each including multiple

US 9,274,866 B2

17

pages, wherein the controller maintains a data structure
identifying blocks of physical memory in the memory
array that have already been erased currently do not store
valid data, wherein the controller generally refrains from
selecting erased blocks from the data structure for pro-
gramming until dwell time thresholds for the erased
blocks are exceeded, and wherein the controller, respon-
sive to receipt of a write input/output operation (IOP)
specifying an address and write data, selects a particular
block from among the erased blocks identified in the
data structure prior to a dwell time threshold for the
particular block being exceeded, programs the selected
block with the write data, and associates the address with
the selected block.

9. The data storage system of claim 8, wherein:

the data structure comprises an available block data struc-

ture identifying erased blocks available for program-
ming;

the controller further maintains an erased block data struc-

ture identifying erased blocks and; and

the controller transfers an entry for the particular block

from the erased block data structure to the available
block data structure prior to the dwell time threshold for
the particular block being exceeded.

10. The data storage system of claim 8, wherein:

the controller determines whether the address is a fre-

quently accessed address; and

the controller selects the particular block prior to the dwell

time threshold for the particular block being exceeded in
response to determining that the address is a frequently
accessed address.

11. The data storage system of claim 8, wherein:

the data storage system further includes the non-volatile

memory array; and

the controller, when programming the block, stores, within

the selected block, a dwell time of a page of the particu-
lar block.

12. The data storage system of claim 11, wherein:

the controller thereafter reads the dwell time of the page

stored within the particular block, determines whether
the dwell time is less than the dwell time threshold, and,
responsive to determining that the dwell time of the page
stored within the particular block is less than the dwell
time threshold, relocates contents of the page to another
page.

13. The data storage system of claim 12, wherein the con-
troller, responsive to the determining, relocates contents of a
plurality of pages of the particular block that were pro-
grammed prior to the page.

14. The data storage system of claim 8, wherein:

the dwell time of the particular block is a time since erasure

of the particular block; and

the controller selects the particular block prior to the dwell

time of the particular block exceeding the dwell time
threshold.

15. A program product for a data storage system including
a non-volatile memory array, the program product compris-
ing:

a storage device; and

program code stored within the storage device that, when

executed by a controller of the data storage system,
causes the data storage system to perform:

18

maintaining a data structure identifying blocks of physi-
cal memory in the non-volatile memory array that
have already been erased and currently do not store
valid data;

5 the controller generally refraining from selecting erased
blocks from the data structure for programming until
dwell time thresholds for the erased blocks are
exceeded;

in response to receipt of a write input/output operation
(IOP) specifying an address and write data:
the controller selecting a particular block from among
the erased blocks identified in the data structure,
wherein the selecting includes selecting the par-
ticular block prior to a dwell time threshold for the
particular block being exceeded; and
programming the selected block with the write data
and associating the address with the selected block.

16. The program product of claim 15, wherein:

maintaining the data structure includes maintaining an

erased block data structure identifying erased blocks and
an available block data structure identifying erased
blocks available for programming; and

the program code further causes the data storage system to

perform transferring an entry for the particular block
from the erased block data structure to the available
block data structure prior to the dwell time threshold for
the particular block being exceeded.

17. The program product of claim 15, wherein:

the program code further causes the data storage system to

perform determining whether the address is a frequently
accessed address; and

the selecting includes selecting the particular block prior to

the dwell time threshold for the particular block being
exceeded in response to determining that the address is a
frequently accessed address.

18. The program product of claim 15, wherein the pro-
gramming includes storing, within the selected block, a dwell
time of a page of the particular block.

19. The program product of claim 18, wherein the program
code further causes the data storage system to perform:

thereafter reading the dwell time of the page stored within

the particular block;

determining that the dwell time is less than the dwell time

threshold; and

10

15

20

25

30

35

45
in response to determining that the dwell time of the page
stored within the particular block is less than the dwell
time threshold, relocating contents of the page to another
page.
s 20 The program product of claim 19, the program code

further causes the data storage system to perform:
in response to the determining, relocating contents of a
plurality of pages of the particular block that were pro-
grammed prior to the page.
21. The program product of claim 15, wherein:

> the dwell time of the particular block is a time since erasure
of the particular block; and

selecting the particular block prior to a dwell time thresh-

old for the particular block being exceeded includes

60 selecting the particular block prior to the dwell time of

the particular block exceeding the dwell time threshold.

#* #* #* #* #*

